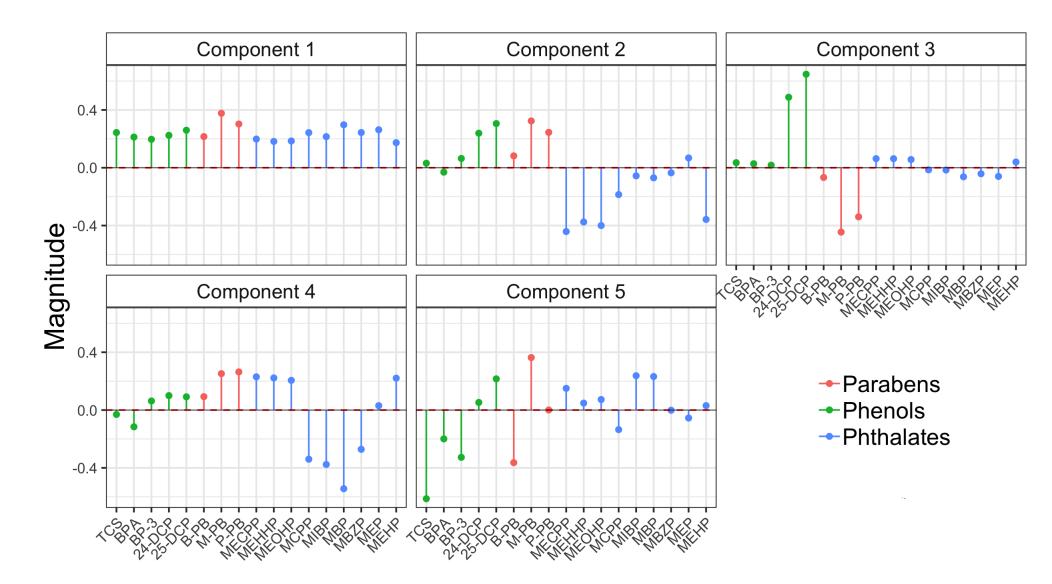
Patterns of phenol, paraben & phthalate exposure in NYC women Elizabeth A. Gibson^{1,†}, MJ Spratlen, R Colgan, J Wright, J Goldsmith, FP Perera, P Factor-Litvak, JB Herbstman, M-A Kioumourtzoglou


¹Environmental Health Sciences Dept, Mailman School of Public Health, Columbia University; [†]e.a.gibson@columbia.edu

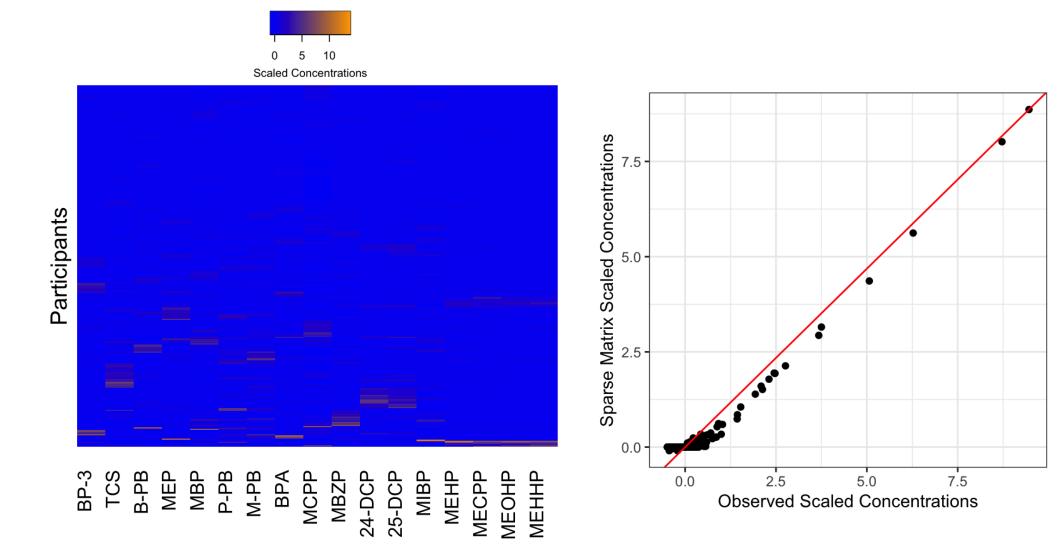
Introduction

- Women disproportionately exposed to chemicals in personal care products.
- Endocrine disruptors \rightarrow adverse health outcomes.
- Exposure in pregnancy \rightarrow fetal and child development.
- \Rightarrow Identification of exposure patterns can inform design of targeted policies and interventions.

Objective: To identify exposure patterns of phenols, parabens, and phthalates and characterize their association with personal care product use in pregnant women.

Results (cont'd)

Methods


Study Population

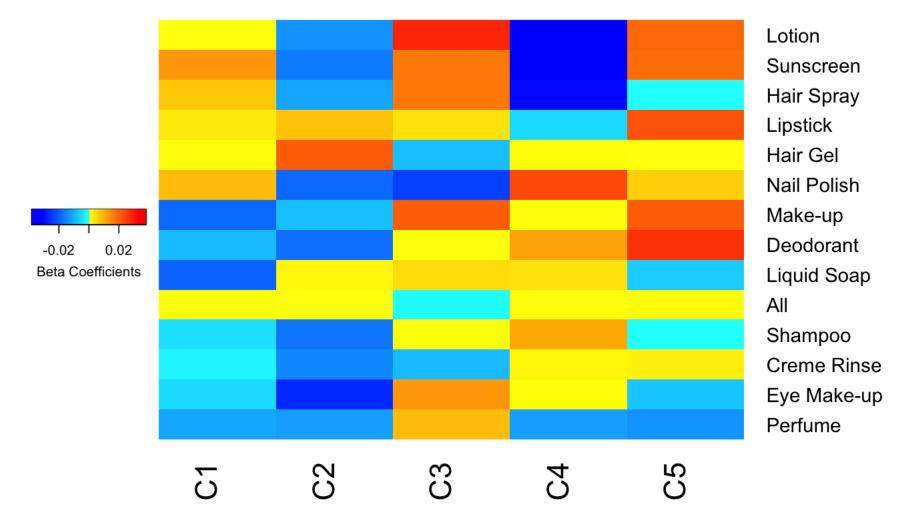
- Mothers and Newborns Cohort
- -342 pregnant women aged 18-35 from New York
- Exposure Assessment:
- -Spot urine samples collected during the third trimester.
- -5 phenols, 3 parabens, and 9 phthalates metabolites measured.
- -All measurements adjusted for specific gravity.
- -Personal care product use assessed via questionnaire.

Statistical Analysis

- 1. Principal Component Pursuit (PCP)
 - Novel and robust pattern recognition and dimensionality reduction technique adapted from computer vision.
 - Simultaneously identifies consistent patterns of chemical exposure and isolates unique exposure events.
 - Exposure concentrations standardized (centered and scaled).

- Fig. 1: Component loadings for the 5 PCP-identified exposure patterns.
- We identified five exposure patterns that:
- 1. Represent overall exposure.
- 2. Separate phthalates from phenols and parabens.3. Separate two phenols and two parabens.
- 4. Separate di(2-ethylhexyl) metabolites from other phthalates.5. Represent disproportionately high triclosan exposure.

Fig. 2: Left: Sparse solution matrix; Right: Original values vs. sparse solution for MECPP (Red line indicates 1:1 relationship).


2. Regressed pattern scores on personal care product use, adjusting for maternal age and race/ethnicity.

Results

Table 1: Descriptive statistics of chemical exposures $(\mu g/mL)$						
	>LOD	Mean \pm SD	Q1	Median	Q3	Max
Phenols						
TCS	81%	71.8 ± 161.4	3.1	8.8	47.7	1000.0
BPA	94%	3.0 ± 4.2	1.0	1.8	3.5	47.2
BP-3	99%	67.5 ± 186.2	4.4	9.40	27.6	1000.0
24-DCP	99%	9.6 ± 18.6	1.4	3.20	7.1	100.0
$25\text{-}\mathrm{DCP}$	100%	218.4 ± 297.0	37.0	90.2	245.8	1000.0
Parabens	,					
B-PB	62%	3.2 ± 9.2	0.1	0.4	1.8	106.0
M-PB	100%	265.1 ± 304.7	41.3	119.0	397.0	1000.0
P-PB	100%	80.4 ± 159.9	5.2	22.7	68.0	1000.0
Phthalates						
MBP	100%	62.8 ± 83.5	20.4	36.9	78.1	1110.0
MBZP	100%	33.2 ± 68.2	5.6	13.7	31.2	663.8
MCPP	94%	3.2 ± 3.5	1.1	2.2	3.9	32.7
MECPP	100%	82.4 ± 177.8	18.7	35.6	77.8	1840.0
MEHHP	100%	58.8 ± 163.6	10.4	21.3	46.1	1750.0

• 61% of sparse solution matrix \rightarrow zero.

• 6 women had high exposures to 5 phthalates, but these were not explained by consistent patterns across the study population.

Fig. 3: Associations between personal care product use and PCP-identified patterns of exposure.

Pattern 1 (-) Make-up; perfume; liquid soap
Pattern 2 (-) Eye make-up; (+) hair gel
Pattern 3 (+) Lotion
Pattern 4 (-) Lotion; hair spray; sunscreen
Pattern 5 (+) Lipstick; deodorant; make-up

MEHP 84% 15.1 ± 45.3 4.9 12.4 613.0 1.9 MEOHP $100\% 44.3 \pm 114.4 8.7$ 17.9 37.6 1320.0 MEP $100\% 404.5 \pm 791.9 70.8$ 139.2 331.9 6223.8 $99\% \quad 14.7 \pm 23.4 \quad 4.9$ 8.9 17.2 374.4 MIBP

• Separating variance due to extreme events from common patterns, PCP explained 81% of the variance in exposure.

Discussion & Conclusion

• Identified exposure patterns linked to personal care product use.

-If patterns linked to adverse health \rightarrow targeted interventions.

• PCP as useful tool to aggregate exposures into consistent patterns.

Support by NIEHS grants F31 ES030263 and PRIME R01 ES028805.

COLUMBIA MAILMAN SCHOOL ENVIRONMENTAL HEALTH SCIENCES