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Why care about mixtures?

• We are exposed to
hundreds (thousands?) of
chemicals at any single
time point

• Traditionally, epi studies
have focused on
single-chemical analyses

• This does not represent
reality

• The combination of
exposures likely induces
different responses Image: ec.europa.eu via Yanelli Núñez
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Exposure pattern recognition

• Why should we care about
identifying exposure
patterns to chemicals in a
population?

• Sources
• Behaviors

• If we link these patterns to
(multiple) adverse health
outcomes

• Efficient regulations
• Targeted interventions
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Some existing pattern recognition methods

Pattern
Recognition

Clustering

K-means

Hierar-
chical

Dimension
Reduction

PCA
Factor
Analysis

NMF

?Not an exhaustive list of methods!!
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Problems with existing methods

• Choice of k patterns/components/factors is subjective
• Local minima depend on initialization
• Outliers may affect solution
• Chemical concentrations may be <LOD

=⇒ Proposed solution: Principal Component Pursuit
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Principal Component Pursuit

• Robust Principal Component Analysis (PCA)
• Unsupervised dimensionality reduction method adapted
from computer vision

• Decomposes design matrix into low rank and sparse
• Low rank matrix estimates consistent exposure patterns
• Sparse matrix identifies unique events

min
L,S

‖L‖? + λ‖S‖1 +
µ

2
‖L+ S −X‖2F

• Robust to noisy/corrupt data
• Global minimum
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PCP image example

Original L̂0 Ŝ0
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PCP extensions

• Non-negativity constraint on low rank matrix
• Novel penalties for values < LOD

• Observed value < LOD & predicted value > LOD

min
L,S

‖L‖? + λ‖S‖1 +
µ

2
‖L+ S − LOD‖2F (1)

• Observed value < LOD & predicted value < 0

min
L,S

‖L‖? + λ‖S‖1 +
µ

2
‖L+ S‖2F (2)

• Observed value < LOD & predicted value [0 – LOD]

min
L,S

‖L‖? + λ‖S‖1 (3)
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Simulations

• Matrix size
• 1,000 × 20

• Low rank structure
• Uniform distributions
• Matrix product
• Rank: 4

• Added noise
• Gaussian
• 0.6 × low rank SD

• Values <LOD
• 0%–90%
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Simulations

• Matrix size
• 1,000 × 20

• Low rank structure
• Uniform distributions
• Matrix product
• Rank: 4

• Added noise
• Gaussian
• 0.6 × low rank SD

• Values <LOD
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Relative error overall & <LOD
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Relative error in loadings and scores
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Relative error in loadings and scores
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Results

• PCP-LOD outperforms PCA
• PCP-LOD outperforms PCP imputed with LOD/

√
2 under

these conditions:
• True underlying low-rank structure exists
• Proportion < LOD is low
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Conclusion

Benefits of PCP:
• Researcher does not need to choose k

• Global minimum
• Improved predictive accuracy over PCA
• Information on extreme events not lost / does not
influence patterns

Benefits of PCP-LOD:
• Do not need to impute values < LOD
• Outperforms PCP imputed with LOD/

√
2 when LOD is low
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Next steps

Immediate next steps:

• Add penalty for known values <LOD
• Determine optimal µ parameter value /
range

• Apply to real environmental data

Where to take the method:

• What to do with S?
• Non-negative pattern identification in L
• User-friendly R package
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