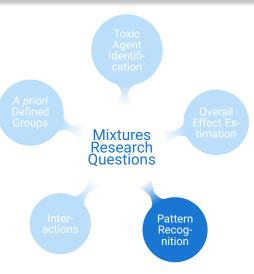
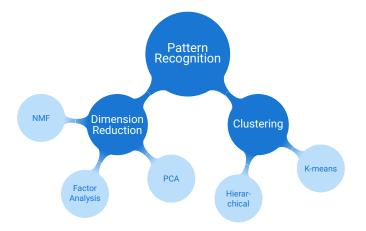
Elizabeth A. Gibson Environmental Health Sciences Mailman School of Public Health Columbia University

Principal Component Pursuit for Pattern Identification in Environmental Health

Joint Statistical Meetings August 4, 2020

Why care about mixtures?


- We are exposed to hundreds (thousands?) of chemicals at any single time point
- Traditionally, epi studies have focused on single-chemical analyses
 - This does not represent reality
- The combination of exposures likely induces different responses


Image: ec.europa.eu via Yanelli Núñez

Exposure pattern recognition

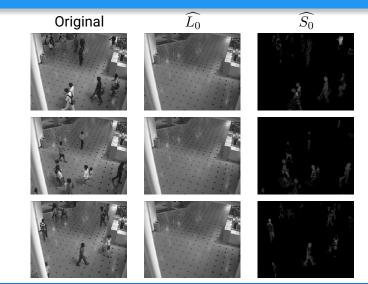
- Why should we care about identifying exposure patterns to chemicals in a population?
 - Sources
 - Behaviors
- If we link these patterns to (multiple) adverse health outcomes
 - Efficient regulations
 - Targeted interventions

Some existing pattern recognition methods

*Not an exhaustive list of methods!!

Problems with existing methods

- Choice of k patterns/components/factors is subjective
- Local minima depend on initialization
- Outliers may affect solution
- Chemical concentrations may be <LOD
- ⇒ Proposed solution: Principal Component Pursuit


Principal Component Pursuit

- Robust Principal Component Analysis (PCA)
- Unsupervised dimensionality reduction method adapted from computer vision
- Decomposes design matrix into low rank and sparse
 - Low rank matrix estimates consistent exposure patterns
 - Sparse matrix identifies unique events

$$\min_{L,S} \|L\|_{\star} + \lambda \|S\|_1 + \frac{\mu}{2} \|L + S - X\|_F^2$$

- Robust to noisy/corrupt data
- Global minimum

PCP image example

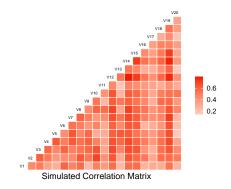
PCP extensions

- Non-negativity constraint on low rank matrix
- Novel penalties for values < LOD
 - Observed value < LOD & predicted value > LOD

$$\min_{L,S} \|L\|_{\star} + \lambda \|S\|_{1} + \frac{\mu}{2} \|L + S - LOD\|_{F}^{2}$$
(1)

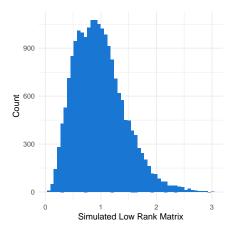
Observed value < LOD & predicted value < 0

$$\min_{L,S} \|L\|_{\star} + \lambda \|S\|_{1} + \frac{\mu}{2} \|L + S\|_{F}^{2}$$
(2)

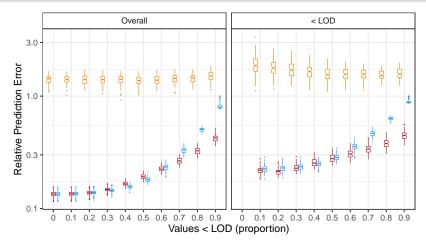

Observed value < LOD & predicted value [0 – LOD]

$$\min_{L,S} \|L\|_{\star} + \lambda \|S\|_{1}$$
(3)

Simulations

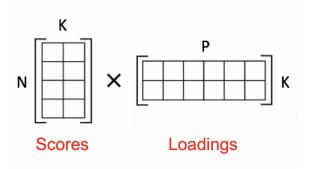

Matrix size

- 1,000 × 20
- Low rank structure
 - Uniform distributions
 - Matrix product
 - Rank: 4
- Added noise
 - Gaussian
 - 0.6 × low rank SD
- Values <LOD
 - 0%-90%

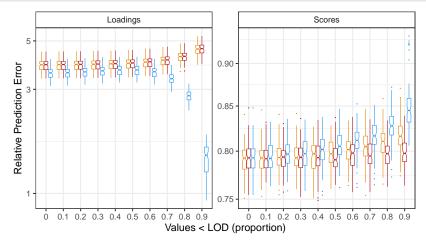


Simulations

- Matrix size
 - 1,000 × 20
- Low rank structure
 - Uniform distributions
 - Matrix product
 - Rank: 4
- Added noise
 - Gaussian
 - 0.6 × low rank SD
- Values <LOD
 - 0%-90%



Relative error overall & <LOD



🖨 PCA 🖨 PCP 🖨 PCP-LOD

Relative error in loadings and scores

Relative error in loadings and scores

🖨 PCA 🖨 PCP 🖨 PCP-LOD

Results

- PCP-LOD outperforms PCA
- PCP-LOD outperforms PCP imputed with LOD/ $\sqrt{2}$ under these conditions:
 - True underlying low-rank structure exists
 - Proportion < LOD is low

Conclusion

Benefits of PCP:

- Researcher does not need to choose k
- Global minimum
- Improved predictive accuracy over PCA
- Information on extreme events not lost / does not influence patterns

Benefits of PCP-LOD:

- Do not need to impute values < LOD
- Outperforms PCP imputed with LOD/ $\sqrt{2}$ when LOD is low

Next steps

Immediate next steps:

- Add penalty for known values <LOD
- Determine optimal μ parameter value / range
- Apply to real environmental data

Where to take the method:

- What to do with S?
- Non-negative pattern identification in L
- User-friendly R package

Acknowledgements

Columbia University PRIME Team:

Marianthi-Anna Kioumourtzoglou Environmental Health

John Wright Electrical Engineering

Jeff Goldsmith Biostatistics

Jingkai Yan Electrical Engineering

Robert Colgan Computer Science

Lawrence Chillrud Computer Science

makLab

Mike He Maggie Li Yanelli Núñez Robbie Parks Sebastian Rowland Jenni Shearston Rachel Tao

PhD Advisor: Julie B. Herbstman

Supported by: NIEHS F31 ES030263 & PRIME R01 ES028805

e.a.gibson@columbia.edu