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Abstract
Purpose of Review The purpose of this review is to outline the main questions in environmental mixtures research and provide a
non-technical explanation of novel or advanced methods to answer these questions.
Recent Findings Machine learning techniques are now being incorporated into environmental mixture research to overcome
issues with traditional methods. Though some methods perform well on specific tasks, no method consistently outperforms all
others in complex mixture analyses, largely because different methods were developed to answer different research questions.We
discuss four main questions in environmental mixtures research: (1) Are there specific exposure patterns in the study population?
(2) Which are the toxic agents in the mixture? (3) Are mixture members acting synergistically? And, (4) what is the overall effect
of the mixture?
Summary We emphasize the importance of robust methods and interpretable results over predictive accuracy. We encourage
collaboration with computer scientists, data scientists, and biostatisticians in future mixture method development.

Keywords Environmental mixtures . Multi-pollutant . Dimension reduction . Variable selection . Bayesian statistics

Introduction

We are exposed daily to numerous environmental pollut-
ants. Only a small proportion of these has been assessed
for toxicity, with most studies conducted in experimental
settings and not necessarily involving humans [1].
Furthermore, studies evaluating adverse health have tradi-
tionally conducted single-chemical analyses. This ap-
proach, however, does not represent reality; we are ex-
posed to a mixture of chemicals at any given time, which
can act synergistically or antagonistically. Furthermore,
due to high correlations among many of these chemicals,

we might detect associations between some of them and
the outcome of interest due to their correlation with the
actual “bad actor(s),” i.e., the actual toxic agent(s) in the
mixture. Finally, testing a plethora of chemicals in single-
pol lu tant models— i .e . , mul t ip le compar isons—
dramatically increases the chances of spurious findings
and, consequently, may increase disagreement across
studies. For these reasons, the US Environmental
Protection Agency, National Research Council (NRC),
and National Institute of Environmental Health Sciences
(NIEHS) have all recognized the necessity to assess ex-
posure to mixtures [2–5].

Assessing exposures to mixtures, nonetheless, is especially
challenging. First, the dimensionality of the data dramatically
increases when one includesmultiple chemicals in the statistical
model. Many studies do not have the power to accommodate
this need. Furthermore, high correlation among chemicals can
lead to collinearity and subsequently inflated standard errors
and unstable effect estimates. Two main issues stemming from
current limitations in mixtures analyses have been identified:
the need for (a) novel and robust statistical approaches to assess
exposure to mixtures, and (b) appropriate use of available sta-
tistical methods in epidemiologic studies [5, 6].
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Given the increasing need to incorporate complex high-
dimensional data in environmental health studies, researchers
have progressively turned toward machine learning (ML)
methods. Adapting ML and data science methods can be es-
pecially advantageous, leading tomore comprehensive studies
of environmental exposure impacts on human health.
Nonetheless, these methods were developed to serve a differ-
ent purpose, mostly focusing on optimizing predictive accu-
racy, which is not necessarily well-aligned with Public and
Environmental Health. Environmental health researchers,
therefore, should be especially cautious when using such
methods and preferably should work with computer and data
scientists, in collaboration with biostatisticians, to best adapt
and extend ML methods for appropriate use in environmental
health.

The goal of this paper is not to give a comprehensive over-
view of all existing methods to analyze exposure to mixtures.
Instead, we will discuss four types of scientific questions that
are of interest in mixtures research. We will provide a concep-
tual description of analytic techniques appropriate to answer
each question, along with examples in recent studies. No sin-
gle method, to date, can adequately address all four types of
mixtures-related scientific questions [5, 6]. Although other
reviews exist on mixtures methods [7–10], here we emphasize
the need for methods that ensure robust results while focusing
on interpretability and inference. Although the specific re-
search question(s) might differ across studies, the two aims
of mixtures analyses are universal: to [1] better understand
biological pathways of pathogenesis, and [2] informmaximal-
ly efficient targeted interventions and policies to best protect
the public and prevent disease. For both of these aims, it is of
utmost importance to select robust methods that provide inter-
pretable, and therefore actionable, results.

Complex Mixture Methods

To discuss complex mixture methods, one must first define
what a mixture is. Although there is no strict definition, ac-
cording to one NIEHS statement, “a mixture must have at least
three independent chemicals or chemical groups” [11].
Generally, exposure to a mixture indicates exposure to multi-
ple “stressors” simultaneously, which can include both chem-
ical and non-chemical (e.g., socioeconomic status, diet, etc.)
components. The question becomes how can we represent the
complexity of reality in a statistical model?

The selected method(s) should be based on the primary
research question. If the interest lies in identifying exposure
patterns or groups of people with similar exposure profiles,
some dimensionality reduction is required [12–15]. To identi-
fy the toxic agent(s) in a mixture, variable selection ap-
proaches may be more appropriate [16, 17]. If the aim is to
evaluate synergistic or antagonistic effects, the main options

are to hard-code interactions into the health model or take
advantage of more flexible semi- or non-parametric models
[18••, 19, 20]. Finally, to observe the effect of the overall
mixture, one may create a weighted index of exposure or
compute the full posterior distribution using Bayesian
methods [18••, 19, 21••].

We present the four main research questions most relevant
for mixtures analyses in Table 1. In the next sections, we
describe appropriate methods to address each of these ques-
tions and provide applied examples. Please note that many of
the methods discussed may answer multiple questions and
thus fall under multiple subsections. To avoid repetition, we
present applications in detail under the research question to
which they contribute most uniquely and mention them as
appropriate when applicable to other sections.

Pattern or Profile Identification

Identification of exposure patterns in the population, e.g., due
to common sources or behaviors, is highly desirable if the goal
is to inform targeted interventions and regulations. Once com-
mon patterns are identified, they can be included as the expo-
sures of interest in health models, resulting in subsequent
identification of the most toxic sources/behaviors.
Regulatory agencies, then, can act on certain sources, and
interventions can be designed to target specific behaviors.
Methods adopted from the pattern recognition field are pow-
erful tools to help researchers identify these shared exposure
patterns.

Questions about pattern or profile identification usually
involve unsupervised techniques to describe the variability
among correlated chemicals in fewer unobserved (i.e., latent)
factors or to identify subgroups of individuals with similar
exposure profiles (i.e., clusters). The solution of unsupervised
approaches is obtained independently of any outcome(s) of
interest. Both clustering and factor analysis involve dimen-
sionality reduction of the original data. Clustering groups
study analysis units (e.g., participants in a cohort study or days
in a time-series), and factor analysis techniques group
chemicals into factors using combinations of the mixture
members within each factor, i.e., patterns. To be meaningful,
the number of clusters or patterns should be substantially low-
er in dimension than the original data.

Table 1 The four main possible questions in mixture analyses

1. Are there specific patterns of exposure in the study population?

2. Which are the toxic agents in the mixture? Or, what are the
independent effects of each mixture member on the health
outcome of interest?

3. Are there synergistic effects or interactions among mixture members?

4. What is the overall effect of the mixture on the outcome of interest?
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Clustering partitions observations (e.g., study participants)
into distinct homogeneous groups so that observations within
groups are similar and observations across groups are differ-
ent. Clustering is often used in exploratory analyses, although
the identified clusters can later be included in a health model
as indicators. Though clustering is not particularly useful in
estimating main effects, this approach can be advantageous
when assessing effect modification by high-dimensional mod-
ifiers [22]. Although the results from clustering can be quite
interpretable, there is no “golden rule” for choosing the num-
ber of clusters [23••], highlighting the importance of expert
knowledge in interpretation.

It may bemore appropriate in environmental mixtures anal-
yses to identify exposure patterns as functions of all mixture
members representing specific sources of exposure or com-
mon behaviors in the study population. Pattern identification
requires expert knowledge to assign interpretable labels to the
estimated patterns. Principal component analysis (PCA) [12]
is the most commonly used dimension reduction technique
employed in environmental epidemiology [24–27]. PCA aims
to explain as much of the total variance in the data as possible
using a smaller number of variables (called components),
which are linear combinations of the original variables. The
researcher must then decide the appropriate number of com-
ponents to include in further analyses based on predefined
criteria, by, e.g., having a priori defined a desired amount of
the total variance explained. Although PCA is still widely
used, its limitations include an orthogonal solution (which
might be contrary to reality if the exposure patterns to be
identified are not independent), no guarantee of an interpret-
able solution, and reliance on the researcher to decide on the
number of components to retain for subsequent analyses.

While more advancedmethods of matrix factorization exist
[28], including positive matrix factorization (PMF) and sparse
non-negative matrix underapproximation (SNMU), the struc-
ture of the results appears largely similar. PMF and SNMU are
similar to traditional factor analysis in that the number of
mixture components is designated by the researcher [15, 29,
30], but they both include constraints in the matrix factoriza-
tion that enhance interpretability. First, the non-negativity con-
straint in both PMF and SNMU ensures that individual scores
and variable loadings on factors are on the same range as the
original variables [15, 31], as all environmental data are pos-
itive (e.g., chemical concentrations). The factors and individ-
ual exposures can be easily described—factors by the relative
proportions of variables, and individual exposures by the rel-
ative proportions of factors. Second, both PMF and SNMU,
unlike PCA, provide nonorthogonal results which can more
realistically describe human exposure [15, 31]. Finally,
SNMU adds a sparsity constraint on the solution by including
a penalty term forcing the lowest contributing variables in the
factor loadings to zero, ignoring chemicals that do not add to
the mixture [30].

Traoré et al. implemented SNMU to identify mixtures of
210 environmental contaminants, including pesticide resi-
dues, trace elements, and minerals, in two cohorts of pregnant
women in France [32]. The authors selected the optimal num-
ber of mixture components in terms of relevance and quality
of interpretation, choosing eight [32]. They additionally ap-
plied hierarchical clustering to identify groups of women with
similar co-exposure profiles [32], clustering participants based
on the patterns identified by the SNMU.

Identification of Toxic Agents and Independent
Effects

When interested in the identification of specific toxic agents
within a mixture and the characterization of their exposure-
response curves, the method of choice should help us estimate
the independent effects of each mixture member. Any analy-
sis, therefore, should incorporate information on the outcome
of interest (i.e., supervised approaches).

Variable selection is one family of methods that may aid in
identifying toxic agents by choosing a subset of relevant mix-
ture members. The most traditional form is subset selection,
including automated forward and backward selection and best
subset selection [23••]. While these are easy to implement,
they can be unstable, as small changes in the data can greatly
affect variable inclusion in the model, and the uncertainty in
the variable selection portion is ignored [33, 34], resulting in
an increased type I error rate [35–37].

To address flaws in subset selection, penalized regression
techniques can be used; these outperform traditional regres-
sion in their predictive capacity. Notably, penalized regression
methods perform better in highly correlated settings, finding a
unique solution even when the number of chemicals is larger
than the number of observations [38]. These methods cannot,
as nomethod can, determine causal agents in highly correlated
mixtures, but they continue to predict well in these settings,
where traditional regression would provide unstable effect es-
timates and inflated standard errors. By penalizing the magni-
tude of the coefficients, “unimportant” variables shrink toward
zero, i.e., their estimated effects are restricted, allowing esti-
mation of the coefficients that are more strongly associated
with the outcome. This trades some bias in the estimated co-
efficients for lower variance and overall mean squared error
(MSE) of the predicted outcome.

Multiple penalization forms exist. Ridge regression
shrinks the sum of the squares of the coefficients,
resulting in non-zero coefficients that are smaller than or
equal to those that would have been obtained using tradi-
tional regression [39]. Lasso (least absolute shrinkage and
selection operator) shrinks the sum of the absolute values
of the coefficients, which pushes some coefficients to ze-
ro, yielding a sparse solution [16]. Elastic net includes
both penalization terms [17].
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The penalization term in each above-mentioned approach
includes a tuning parameter (λ) between zero (making the
model equivalent to traditional regression) and infinity (where
all coefficients are shrunk toward zero) [23••, 40]. Usually,
model fitting includes a training set and a validation set to
choose λ, followed by a test set to estimate the true MSE of
the model [41]. In environmental epidemiology, a test set may
not be necessary and is often unavailable, but some form of
hold-out or cross-validation analysis to justify the choice of λ
is warranted.

Lasso has been more commonly used than ridge regression
recently because it produces a sparse solution (i.e., the coeffi-
cients of some exposures will be estimated as exactly zero).
One simulation study showed that lasso outperforms other
penalized methods when there is a small to moderate number
of moderate-sized true effects, while ridge regression per-
forms better when there is a large number of small true effects
[16]. However, this simulation was not performed in an envi-
ronmental epidemiology setting and should be interpreted
cautiously. When mixture members are highly correlated,
ridge and elastic net will push coefficients toward each other
[17, 39]; lasso will keep one of the correlated variables in the
model and push the others to zero [16]. If multiple toxic agents
in correlated mixtures are hypothesized, elastic net may pro-
vide the best balance of sparsity and inclusion of correlated
variables that best predict the health outcome.

The coefficients for the selected variables are not necessar-
ily the same as those that would have been obtained from
traditional regression including only that subset. It is even
possible for corresponding coefficients in the two models to
be in different directions [16]. A large drawback for use of
these penalization methods in environmental health is the dif-
ficulty in obtaining valid inferences, as the coefficients are
non-linear and non-differentiable [16]. To overcome this,
many researchers have first fit a penalized regression (e.g.,
Lasso) and subsequently included the selected variables in a
traditional regression model. This practice is not well justified
for inference, as it underestimates standard errors by ignoring
uncertainty in the variable selection step.

Nwanaji-Enwerem et al. used an adaptive lasso to select
PM2:5 constituents associated with DNA methylation age
[42]. This approach incorporates user-specified weights to pe-
nalize individual coefficients differently so that constituents
with larger effects are penalized less than those with smaller
effects [43]. The mixture of interest in their analysis included
five PM2:5 constituents (organic and elemental carbon, sulfate,
nitrate, and ammonium) that made up 89% of the total PM2:5

mass concentration. With covariates fixed in the model so that
only constituents could be penalized, sulfate and ammonium
remained in the model, positively predicting Horvath DNA
methylation age [42].

Additionally, Bayesian kernel machine regression (see
“Interactions”) models the independent exposure-response

functions between all exposures and the outcome and can be
used to identify independent effects and characterize the
exposure-response relationship. Weighted quantile sum re-
gression (see “Overall Mixture Effect”) assigns weights to
mixture components which are interpreted as variable impor-
tance factors; these can identify potentially toxic agents but
fail to provide individual effect estimates.

Interactions

Identification of potentially synergistic effects among
chemicals is essential if there is reason to believe that the
combined health effect is greater (or less) than the sum of
the independent effects. This is often hypothesized when
studying chemicals that share stereochemical features or that
target the same biological pathway. If regulatory action or
interventions aim only to lower exposure to one chemical
below a certain threshold, while this chemical works synergis-
tically with another, then the necessary reduction will be
underestimated among people exposed to both chemicals.
Methods to assess interactions between chemicals can identify
susceptible groups in those exposed to interacting chemicals
simultaneously. Interactions can be hard-coded into models,
including lasso and weighted quantile sum (WQS) regression
(see “Overall Mixture Effect”). However, this practice re-
quires a priori deciding which interaction terms to include
and can only accommodate a small number of all potential
high-order and non-linear interactions. To address this limita-
tion, semi- or non-parametric methods are preferred.

Non-parametric methods make no assumptions about the
functional form of the association, instead using tuning pa-
rameters to estimate a curve as closely as possible to each
point without over-fitting [23••]. Such approaches can more
accurately fit nonlinear exposure-response relationships and
allow for non-additive interactions among all mixture mem-
bers without explicitly including them in the model. Semi-
parametric methods combine the flexibility of non-
parametric models with a parametric portion which is compu-
tationally easier to estimate [40], allowing for the adjustment
of potential confounders. However, such approaches often
require a larger sample size than is typically needed for a
parametric approach, since they do not reduce the problem
of estimating the functional form of the data to a few param-
eters [23••].

Bayesian kernel machine regression (BKMR) is a semi-
parametric technique that models the exposure-response rela-
tionship as a non-parametric kernel function of the mixture
members, adjusting for covariates parametrically [18••, 19,
20]. The Gaussian kernel is commonly used for flexibly cap-
turing a wide range of underlying functional forms, including
non-additive interactions, without specifying the shape of the
individual exposure-response curves or the existence of inter-
actions among mixture members [18••, 44]. BKMR also
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assesses independent effects, allows for component-wise or
hierarchical variable selection, and estimates the overall effect
of a mixture [18••, 19, 20], but we include it in this section due
to its unique ability to detect nonlinear interactions.

Wasserman et al. used BKMR to estimate the joint effects
of exposure to a mixture of five metals (arsenic, lead,
manganese, cadmium, and selenium, measured cross-
sectionally) and peri-natal arsenic on intellectual function in
adolescents in Bangladesh [45]. While no interactions were
observed, they found that increased arsenic and cadmium
were associated with decreased raw full scale IQ, as was the
overall mixture exposure [45].

Other methods to assess high-order and non-linear interac-
tions include tree-based methods [40]. Regression and classi-
fication decision trees yield highly interpretable results, but
they tend to be unstable, i.e., small changes in the data can
cause large changes in the estimated trees.More complex tree-
based methods, such as random forests, are more robust to
variation and have improved prediction, but they lose the in-
terpretability of the single tree [23••]. Several groups have
begun to implement these methods in environmental mixtures
[46–48].

Overall Mixture Effect

Characterizing the overall effect of combined chemical expo-
sures is necessary to adequately define the total body burden
of environmental mixtures.When exposure to individual com-
pounds is below a set regulatory concentration or too low to
show independent effects, an overall effect may still exist in
combination with other exposures which target a common
health endpoint. The NRC now recommends that risk assess-
ment efforts account for cumulative risk associated with
chemicals that affect the same health outcome [9, 49]. If no
interaction is present, i.e., effects are believed to be additive, a
composite of chemicals or a weighted index allows for the
estimation of the combined effects of individual compounds
without reducing the unique exposures to a simple sum.

Various methods exist to create a weighted score of expo-
sure prior to the modeling step. Toxic equivalency factors
(TEF), for example, are often used with dioxins and dioxin-
like chemicals to weigh their toxicity in terms of the most
toxic dioxin. Individual weights are determined by structural
and binding similarities, ability to elicit a toxic response, per-
sistence, and bio-magnification. A single number—a toxic
equivalency (TEQ) score—is estimated as the sum of the
products of each chemical’s concentration and its individual
TEF value, and can be used as a cumulative measure of expo-
sure to these related chemicals [50, 51]. Use of TEQ, however,
is limited to chemicals whose main mechanism of action is
shared with dioxin. Creating such indices, therefore, for other
mixtures can be challenging, especially if such prior knowl-
edge is not available.

When less is known a priori about the individual toxicity of
the mixture members, WQS regression creates an empirically
weighted index which can be more widely implemented for
any mixture. The estimated coefficient of this index is
interpreted as the mixture effect [21••]. As the name implies,
WQS categorizes the continuous exposures into quantiles to
reduce the impact of outliers and ensure that all exposure
variables are on the same scale [21••, 52], but this also reduces
the amount of information in the data. WQS is analogous to
the variable selection methods discussed in “Identification of
Toxic Agents and Independent Effects”, with each variable’s
penalization determined by its respective weight. WQS then
assigns a single coefficient to the weighted index—the sum of
the concentration quantiles of each member multiplied by its
weight. The weights identify toxic agents and “zero out”
chemicals with negligible associations [21••, 53]. If the index
coefficient is statistically significant, important components of
the index (i.e., toxic agents) can be identified as those with the
highest weights [21••]. The weights provide information on
the relative importance of individual mixture members but no
corresponding effect estimates.

White et al. used WQS to estimate the overall effect of a
mixture of ten metals (antimony, arsenic, cadmium, chromi-
um, cobalt, lead, manganese, mercury, nickel, selenium) on
breast cancer risk [54]. The WQS index was positively asso-
ciated with postmenopausal breast cancer but not with overall
or ER+ breast cancer. Cadmium, lead, and mercury had the
largest weights in the post-menopausal breast cancer index
[54].

Bayesian methods, such as BKMR (see “Interactions”),
can also estimate the overall effect of the mixture by modeling
the entire multi-dimensional posterior distribution.

Bayesian Methods

Though challenges still remain, recent advances in computa-
tional performance and scalability [55] have opened the door
to Bayesian methods in environmental epidemiology.
Bayesian methods explicitly use probability to quantify uncer-
tainty in inference, i.e., there is (in principle) no impediment to
fitting models with many parameters, correlated exposure var-
iables, or complicated exposure-response specifications
[56••], and these methods may be used to answer multiple
mixtures questions in the same analysis. Given the flexibility
of Bayesian methods, they are a promising direction for new
development.

Bayesian methods estimate the full posterior distribution of
the unobserved quantities [56••], meaning that all Bayesian
models can estimate an overall effect. Additionally, inclusion
of prior information—a hallmark of Bayesian data analysis—
becomes a powerful tool in environmental mixture methods.
Prior knowledge of effect estimates (magnitude or direction
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taken from expert knowledge or previous research) or chem-
ical groupings (by exposure source, biological pathway, or
shared toxicity) can be explicitly incorporated in the model.

BKMR, for example, assesses potentially non-linear inde-
pendent effects and the overall effect in addition to interac-
tions among mixture members. It also allows for hierarchical
grouping of mixture members [18••, 19, 20]. Other examples
of Bayesian methods in environmental mixtures exist, as
well. Bayesian hierarchical methods [57–59], Bayesian mod-
el averaging [60–64], Bayesian additive regression trees
[65–67], Bayesian profile regression [10, 68, 69], and
semi-Bayesian methods (which provide faster results)
[70–72] have been implemented in environmental mixtures
research, but they are not yet widely used. Computational
advances in processing speed coupled with developments in
ML and biostatistical modeling can make these methods
accessible to environmental epidemiologists. There is space
and need for more method development, in collaboration
with data and computer scientists and biostatisticians, in
our field.

Discussion

Although multiple methods currently exist for environmental
mixture research, nomethod can answer all mixture questions,
highlighting the importance of a well-defined research ques-
tion to guide method selection. The interpretability of results
(over predictive accuracy) is critical in determining the use-
fulness of novel statistical, data science, or ML methods in
environmental epidemiology. Despite statistical advances, all
methods share certain limitations. Given high correlations
across chemicals and varying measurement error in species-
specific concentrations, any statistical method will pick the
chemical with the least amount of measurement error that
either is the toxic agent or is correlated with the toxic agent
(but measured with less error) [73, 74]. Furthermore, if expo-
sure biomarkers are used (e.g., chemicals or metabolites mea-
sured in biosamples), their half-lives and the timing of sample
collection with respect to exposure matter. Depending on the
chemicals’ half-life and the critical window of exposure, all
approaches are susceptible to selecting a chemical whose con-
centration was high during the critical exposure window and
remained high during sampling; exposure to this selected
chemical likely co-occurred with exposure to the actual toxic
agent that—if it has a short half-life—might be undetected at
sampling or measured with excess noise depending on the
varying time between the critical exposure window and sam-
pling across subjects. It is also conceivable that the actual
toxic agent is not included in the mixture to be analyzed.
Focusing, therefore, on identifying the toxic agent(s) might
lead to the wrong conclusion under such scenarios, regardless
of the choice (and performance) of method.

In mixture analyses, the researchers define the mixture to
investigate, which is most often not the full true mixture to
which the study population is exposed. The above-mentioned
issues, then, may be amplified when the examined mixture is
small (relative to the size of the true mixture), due to residual
confounding from unmeasured chemicals or shared sources.
Caution should also be applied when using the terms “overall”
or “cumulative” for such small mixtures, as these are usually
only a subset of the actual mixture of interest. The complexity
of environmental mixtures—chemical and non-chemical—
and analytical limitations for measurement of chemicals add
to the difficulty of arriving at a perfectly specified model.
Including correlated exposure variables in any model may
amplify rather than reduce confounding bias [75]. These
methods, additionally, present challenges in power estimation,
but simulations can be used to calculate power. Simulations
require certain assumptions about the data structure, as do
power calculations for traditional regression. Finally, uncer-
tainty propagation is an often-overlooked concern, mostly of
unsupervised methods.Many researchers simply include PCA
scores or cluster membership in health models ignoring the
uncertainty inherent in the solution selection, often based on
implicit assumptions. Propagation of uncertainty will lead to
more valid inferences and can result in fewer spurious results
and more consistent findings across methods and studies [25].

Although in this paper, we did not discuss study designs,
most of the discussed methods can accommodate outcome
distributions beyond normal, and can be used in multiple
study designs, for example—but not limited to—
longitudinal or time-to-event analyses. We note, however, that
certain designs might introduce additional challenges. For in-
stance, assessing exposure to a mixture that varies over time
can be challenging, especially if the different chemicals in the
mixture induce toxicity at different time points.

In future mixture analyses and method development, re-
searchers should focus on robustness of findings. Different
populations experience different exposure mixtures and dif-
ferent distributions of potential modifiers, so we should not
expect to replicate results (patterns or effect estimates) across
populations. Rather, unstable methods should be avoided, and
multiple methods should be used, whenever possible, to ad-
dress a research question. When investigating an overall effect
using WQS, for example, BKMR may be used as sensitivity
analysis. Care should be taken, however, when employing
different methods—if a specific research question is not stat-
ed, different methods may provide results that appear conflict-
ing. For methods that employ simulations or rely on user-
specified prior information (i.e., Bayesian methods), internal
assessment of reproducibility is also warranted.

These limitations and model-specific assumptions should
be carefully considered when interpreting results of mixtures
analyses. Additionally, groups developing mixtures methods
should consider extensions that take this information into

Curr Envir Health Rpt



account when estimating health effects. Furthermore, combin-
ing methods may be of interest, for example, coupling factor
analysis with BKMR if one is interested in assessing the
exposure-response of exposure patterns and their potentially
non-linear interactions.

Bayesian approaches, furthermore, inherently accommo-
date supervised pattern recognition, fully propagating uncer-
tainty in the health model, thus identifying patterns specific to
each outcome and better characterizing biological pathways.
New Bayesian (and semi-Bayesian) methods could further
allow more flexible modeling, explicit incorporation of uncer-
tainty, inclusion of prior knowledge, and the ability to answer
multiple questions simultaneously. Method development
should involve direct collaboration with computer scientists,
data scientists, and biostatisticians to take advantage of com-
putationally efficient ML algorithms and to obtain interpret-
able results from sophisticated models. Complex ML predic-
tion methods generate enthusiasm across disciplines, but if
their results are not directly interpretable in health effects anal-
yses, they are unlikely to benefit the ultimate research goals of
understanding biological pathways and informing regulatory
action.

Conclusion

With careful incorporation of ML and data science methods,
environmental epidemiologists are better able to explore com-
plex relationships between environmental mixtures and ad-
verse health. While each new prediction method appears to
improve upon previous methods, effect estimation rather than
outcome prediction should be the desired result. To this end,
environmental epidemiologists must work with experts out-
side of our field to better adapt ML methods to our goals,
instead of simply employing methods as they come. As meth-
od development for environmental mixtures continues, we
recommend Bayesian methods for their flexibility and inter-
pretability of their results. Although no single model to date
can answer all mixtures questions, a well-defined research
question will point toward the correct approach—whether
identification of patterns or independent, synergistic, or over-
all effect(s). Results are only useful, no matter how sophisti-
cated the method, if they are robust, reproducible, interpret-
able, and, finally, actionable.
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