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Why care about mixtures?

• We are exposed to
hundreds (thousands?) of
chemicals at any single
time point

• Traditionally, epi studies
have focused on
single-chemical analyses

• This does not represent
reality

• The combination of
exposures likely induces
different responses Image: ec.europa.eu via Yanelli Núñez
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What is a mixture?

• Actually, there is no strict definition

• According to NIEHS “a mixture must have at least
three independent chemicals or chemical groups”

• Generally, exposure to a mixture indicates exposure to
multiple “stressors” simultaneously

• Chemical
• Non-chemical (SES, diet, etc)
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Million dollar question

• The necessity to assess exposure to mixtures is now
well-recognized

• US EPA, NRC, and NIEHS all agree

How can we represent the compexity of reality in a
(single) statistical model?
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How do we deal with exposure to mixtures?

• This is still a very open question
• Existing methods have limitations
• There have been several workshops held by EPA and

NIEHS to address this issue
• The most recent NIEHS workshop (2015) concluded that

1 Although some methods performed better than others, the
presented estimated associations were still quite variable
and not in agreement

2 The choice of method should depend on the research
question
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Why do traditional methods fail?

• Chemicals are often highly-correlated
• This means that they cannot go in the same regression

model
⇒ Large standard errors and unstable effect estimates

• Requires more flexible models
• Group chemicals or assays
• Drop some chemicals
• Incorporate machine learning techniques
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Some considerations

1 No single method outperforms all others for all potential
questions

2 Interpretability
3 Robustness (stable solutions)
4 Computational scalability – as N and/or p increase, some

methods begin to fail
5 Exploration vs. hypothesis testing
6 Not a good idea to “blindly” use methods from other fields

– may need to adjust them first
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Interpretability
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Potential questions in mixtures analyses

For mixtures
analyses the

selected method
depends on the

primary research
question

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Inter-
actions

A priori
Defined
Groups

Toxic
Agent

Identifi-
cation
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Bird’s-eye (over)view of existing mixtures methods

⋆Not an a exhaustive list of methods!!

Toxic Agent
Identification

BKMR

Penalized
Methods

Lasso

Elastic
Net

WQS

SEM

Overall
Effect

Estimation

Toxic
Equivalency BKMR

WQS

(semi-)
Bayesian

Hierarchical

unsprv

A priori
Defined
Groups

Group Lasso

(semi-)
Bayesian

Hierarchical

SEM

Hierarchical
BKMR

Pattern
Identification

Clustering

K-means

Hierarchical
Clustering

Dimension
Reduction

PCA

Factor
Analysis

NMF

unsprv

Interactions
& Non-

linearities

CART

Random
Forests

ESS

BKMR
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Comparing results across methods

• Generally a good practice
• Especially if complementary methods
• Sensitivity analyses to assess robustness of results

• If different methods address different questions,
consistency in findings is welcome, but not expected

• If/when differences across methods are detected → keep
in mind what the aim of each method is!

• Trying different methods and choosing the answer we like
the best should always be avoided

• I.e., no cherry-picking!
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Overall mixture effect

• We may want to estimate
the overall mixture effect

• As chemical
concentrations in the
mixture increase, do we
observe corresponding
changes in the outcome?

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Inter-
actions

A priori
Defined
Groups

Toxic
Agent

Identifi-
cation
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Overall mixture effect example

• Participants: 726 14–16 year olds whose mothers are
participants in HEALS

• Exposure measurement: Blood As, Pb, Mn, Cd, and Se
assessed at time of visit; maternal HEALS baseline
creatinine-adjusted urinary As (mUAscr) used as indicator
of in utero As exposure

• Outcome assessment: Culturally modified version of the
WISC-IV, raw Full Scale scores
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Overall mixture effect example (cont.)

Research question:
Is the metal mixture (As, Pb,
Mn, Cd, Se, and maternal As)
associated with intellectual
function in adolescents?

Mixture method:
Bayesian Kernel Machine
Regression (BKMR)
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Overall mixture effect example (cont.)

Bayesian Kernel Machine Regression (BKMR)

• Uses a flexible function of the exposures in the mixture
• Specified by a Gaussian kernel

K (z, z′) = exp

{
−

M∑
m=1

rm (zm − z′m)
2

}
• Identifies important mixture members

• Accounts for the correlated structure of the mixture
• Incorporates a component-wise variable selection process

• Estimates potentially non-linear and non-additive
exposure-response functions

• Evaluates high-order effects, i.e. interactions
• Bayesian framework allows overall effect estimation
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Overall mixture effect example (cont.)
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Identifying toxic agents

• aka “bad actors”
• Which chemical(s) in my

mixture are related to the
outcome?

• Estimate chemical-specific
independent effects

• While accommodating the
(potentially very) high
correlations among
mixture members

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Inter-
actions

A priori
Defined
Groups

Toxic
Agent

Identifi-
cation
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Toxic agent example

Research question:
Is adolescent As exposure
associated with intellectual
function while accounting for
Pb, Mn, Cd, Se, and maternal
As exposure during
pregnancy?

Mixture method:
Bayesian Kernel Machine
Regression (BKMR)
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Toxic agent example (cont.)
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Interactions & non-linearity

• Actually, two different
classifications of potential
research questions

1 Interactions among
mixture members?

2 Non-linear exposure –
response curves?

• Methods tend to do both

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition
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actions
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Non-linearity

• Because linearity is just an
assumption · · · Mixtures

Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Non-
linearity

A priori
Defined
Groups

Toxic
Agent

Identifi-
cation
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Interactions among mixture members

• Combined health effects
may be greater (or less)
than the sum of
independent effects

• Potential synergism
• Most methods can

accommodate a priori
defined interactions

• Need to hard code
• Dimensionality · · ·

→ Semi- or non-parametric
methods preferred

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Inter-
actions
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Interactions and non-linearity example

• Participants: 726 14–16 year olds whose mothers are
participants in HEALS

• Exposure measurement: Creatinine-adjusted urinary As,
blood Pb, Mn, Cd, and Se were assessed at time of
recruitment

• Outcome assessment: Blood pressure measured at the
time of recruitment
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Interactions and non-linearity example (cont.)

Research question:
Is the relationship between
adolescent As exposure and
blood pressure linear while
accounting for Pb, Mn, Cd,
and Se? Do these metals
interact?

Mixture method:
Bayesian Kernel Machine
Regression (BKMR)
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Interactions and non-linearity example (cont.)
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Interactions and non-linearity example (cont.)
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A priori defined groups

• We might have some prior
knowledge or hypothesis
on how chemicals

• Group naturally in the
environment

• Might share pathway to
toxicity

• Methods exist to allow
estimation both of group
and within-group effects

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
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A priori defined groups example

• Participants: 1,003 adults ≥ 20 years of age included in
NHANES 2001–2002

• Exposure measurement: 18 PCBs, dioxins, and furans
measured in blood serum and adjusted for serum lipids

• Outcome assessment: Leukocyte telomere length (LTL)
relative to standard reference DNA (T/S ratio) was
measured in whole blood DNA
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A priori defined groups example (cont.)

• Toxic equivalency factor (TEF): a measure of relative
potency compared with that of reference dioxin TCDD

• Original study used potency-weighted sums
• Created three groups with varying TEFs

• Non–dioxin-like PCBs (no TEFs)
• Non-ortho PCBs (high TEFs)
• Mono-ortho PCB 118, furans, and dioxins (mid–high TEFs)
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A priori defined groups example (cont.)

Research question:
Which defined congener
groups are associated with
changes in log-LTL and what
are the magnitudes of
individual congeners’
associations within those
groups?

Mixture method:
Group Lasso
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A priori defined groups (cont.)

Group lasso

• Variable selection method:
• Uses a penalty term to constrain the regression model
• Minimizes the sum of the absolute values of the

coefficients

min
β∈Rp

∥∥∥∥∥y − β01−
L∑

ℓ=1

Xℓβℓ

∥∥∥∥∥
2

2

+ λ

L∑
ℓ=1

√
pℓ ∥βℓ∥2


• Keeps only those groups that are the most relevant to the

outcome
• Penalizes exposures within the same group equally
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A priori defined groups example (cont.)
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Exposure pattern recognition

• Why should we care about
identifying exposure
patterns to chemicals in a
population?

• Sources
• Behaviors

• If we link these patterns to
(multiple) adverse health
outcomes
→ Efficient regulations
→ Targeted interventions

Mixtures
Research
Questions

Overall
Effect Es-
timation

Pattern
Recog-
nition

Inter-
actions

A priori
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Toxic
Agent

Identifi-
cation
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Exposure pattern recognition example

• Participants: 342 pregnant women aged 18–35 from
Mothers & Newborns cohort

• Exposure measurement: 5 phenols, 3 parabens, and 9
phthalate metabolites from spot urine samples collected
during the third trimester, adjusted for specific gravity

• Exposure sources: Personal care product use assessed via
questionnaire
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Exposure pattern recognition example (cont.)

Research question:
Are there patterns of phenol,
paraben, and phthalate
exposure in pregnant women,
and are they associated with
personal care product use?

Mixture method:
Principal Component Pursuit
(PCP)
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Exposure pattern recognition example (cont.)

Principal Component Pursuit (PCP)
• Robust Principal Component Analysis (PCA)
• Data dimensionality reduction method adapted from

computer vision
• Decomposes design matrix into low rank and sparse

matrices
• Low rank matrix estimates consistent exposure patterns
• Sparse matrix identifies unique events

min
L,S

∥L∥⋆ + λ∥S∥1 +
µ

2
∥L+ S −X∥2F

• Robust to noisy/corupt data
• Not influenced by outlying values
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PCP image example

Original L̂0 Ŝ0
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Exposure pattern recognition example (cont.)
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Exposure pattern recognition example (cont.)
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Exposure pattern recognition example (cont.)
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Next steps

• PCP methods extension
• Improve dependence on tuning

parameters
• Extend to allow for

non-negative solutions
• Implement novel penalty for

values ≤LOD
• Nest within supervised model
• Assess performance and

compare with existing methods
• Publish user-friendly R package
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